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The stability of a water layer of uniform thickness held in a two-dimensional container of finite or semi-
infinite extent is examined using linear stability theory. The liquid-vapor interface can be heated both through
the liquid and through the vapor, as previously experimentally reported. The need to introduce a heat transfer
coefficient is eliminated by introducing statistical rate theory �SRT� to predict the evaporation flux. There are
no fitting or undefined parameters in the expression for the evaporation flux. The energy transport is param-
etrized in terms of the evaporation number, Eev, that for a given experimental circumstance can be predicted.
The critical Marangoni number for the finite, Macf, and for the semi-infinite system, Mac�, can be quantita-
tively predicted. Experiments in which water evaporated from a stainless-steel funnel and from a polymethyl
methacrylate �PMMA� funnel into its vapor have been previously reported. Marangoni convection was ob-
served in the experiments that used the stainless-steel funnel but not with the PMMA funnel even though the
Marangoni number for the PMMA funnel was more than 27 000. The SRT-based stability theory indicates that
the critical value of the Marangoni number for the experiments with the PMMA funnel was greater than the
experimental value of the Marangoni number in each case; thus, no Marangoni convection was predicted to
result from an instability. The observed convection with the stainless-steel funnel resulted from a temperature
gradient imposed along the interface.
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I. INTRODUCTION

The conditions at the liquid-vapor interface during phase-
change processes have proven to be surprisingly complex.
Earlier experimental studies have indicated that on the center
line of an axisymmetric liquid phase evaporating into its va-
por while maintained at the circular mouth of a stainless-
steel funnel, there are interfacial-temperature discontinuities
in which the interfacial-vapor temperature is greater than that
of the liquid and that the magnitude of the discontinuity de-
pends on the evaporation flux �1–4�. Although these mea-
surements were made with microthermocouples, the mea-
surements have been used with statistical rate theory �SRT�
�5� to predict the latent heat and constant pressure specific
heat of water as functions of temperature that are in agree-
ment with independently measured values of these properties
�6�. We emphasize that the measured interfacial temperatures
were used in the analysis, as opposed to temperatures mea-
sured at the funnel throat.

In contrast, Bond and Struchtrup used temperatures mea-
sured at the funnel throat as part of the inputs to their analy-
sis to calculate the interfacial temperatures. They concluded
that the energy flux is the dominant factor in determining the
interfacial-temperature discontinuities and noted that the pa-
rameters in their analysis could be chosen to give good
agreement with the experiments of Refs. �1,3� but that the
classical-kinetic-theory-based Hertz-Knudsen and Schrage
laws could not. The validity of the Hertz-Knudsen relation
was also questioned by Hołyst and Litniewski �7� who used
molecular dynamics to examine the evaporation into a
vacuum from a liquid film. They also examined the evapo-

ration of an enclosed nanosized droplet and concluded that
the temperature discontinuity depended, in part, on how the
vapor interacted with the enclosing walls �8�. It remains an
open question of how the evaporation and condensation co-
efficients of the Hertz-Knudsen relation may be determined
other than empirically �9,10�.

However, neither the study by Bond and Struchtrup nor
those of Hołyst and Litniewski included surface-tension-
driven �or Marangoni or thermocapillary� convection in their
analysis. Since in the experiments of references �1–3� the
interfacial temperature was measured only on the funnel cen-
ter line, from those measurements alone, it could not be es-
tablished whether Marangoni convection existed. Even if
buoyancy-driven convection was eliminated in these experi-
ments, Marangoni convection could have contributed signifi-
cantly to the energy transport in the bulk liquid �11–15�.

In subsequent water evaporation experiments conducted
with the same stainless-steel funnel, the interfacial tempera-
tures were measured along the interface. In each experiment,
the interfacial-temperature discontinuity persisted at posi-
tions along the interface, but as the interfacial evaporation
flux was increased, a transition from quiescent water evapo-
ration to evaporation with Marangoni convection occurred
�16�, but the mechanism by which the Marangoni convection
was initiated was unclear �see below�. Nonetheless, it was
shown that an extraordinary amount of energy was trans-
ported by the Marangoni convection. The energy transport
was defined in terms of the surface-thermal capacity, c�, and
for one value of this surface property, the-conservation-of-
energy principle was satisfied for each of nine water evapo-
ration experiments conducted over a range of conditions
�17�. The value of c� was confirmed in a second set of ex-
periments in which the liquid-vapor interface was converted
from spherical to cylindrical and the area increased by a
factor of 4 �18�. It was hypothesized that the large value of*charles.ward@utoronto.ca
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c� resulted from the polar interactions of the water mol-
ecules. This hypothesis was supported by a third set of
evaporation experiments that used D2O as the test fluid.
These experiments indicated the value of c� was similar to
that of H2O �19�.

Since Marangoni convection is indicated to transport an
extraordinary amount of thermal energy during water evapo-
ration �20�, it is important to determine under what condi-
tions Marangoni convection is initiated in volatile liquids
because it potentially offers a means of enhancing the effi-
ciency of evaporation and thus has a number of important
applications.

II. INITIATION OF MARANGONI CONVECTION
DURING LIQUID EVAPORATION

In a recent paper, experiments were discussed in which
water evaporated into its vapor while maintained at the
circular mouth of a PMMA funnel with the funnel throat
maintained at a constant temperature of �3.5 °C �21�. No
Marangoni convection was observed, even though the ex-
perimental Marangoni number was more than 12 times
greater than the value of the Marangoni number predicted to
be critical by the Pearson-Nield model �22,23�. Thus, on the
basis of the Pearson-Nield model, Marangoni convection
was expected, but no evidence of its presence was found.

In contrast, when H2O and D2O each evaporated into
their respective vapors while maintained at the circular
mouth of a stainless-steel funnel with the funnel throat also
maintained at �3.5 °C, Marangoni convection was clearly
present �16,17,19�, but the mechanism by which the convec-
tion was initiated was not clear. The value of the critical
Marangoni number, Macr, was in reasonable agreement with
that predicted by the Pearson-Nield model �81 compared
with �147�, but the possibility of thermal conduction from
the funnel throat through the funnel walls to the periphery of
the funnel mouth, resulting in a temperature gradient along
the interface from the periphery to the funnel centerline,
could not be eliminated �21�. The thermal conductivity of
stainless steel is �78 times that of PMMA, the funnel de-
signs were similar, and the temperatures at the funnel throats
were very nearly the same in all experiments. If this hypoth-
esis is accepted, it leaves unanswered the question of how a
Marangoni number of 27 847 could have existed in the ex-
periments with the PMMA funnel without Marangoni con-
vection having been initiated by the mechanism proposed by
Pearson �22�.

It is argued in �21� that since the heat transfer coefficient
is an arbitrary coefficient in the Pearson model—there is no
way within that model to determine its value �24�—and it
can not be zero if the liquid is evaporating, the Pearson
model only applies to nonvolatile liquids in semi-infinite
containers. The experimental support for the Pearson model
has been found only with nonvolatile liquids, primarily sili-
cone oil �25–27�. Chai and Zhang �28� considered volatile
liquids, and proposed a modification of the expression for the
critical Marangoni number that had been proposed by Pear-
son. Barnes and colleagues �29,30� used interferometry to
examine the temperature profile in water as it evaporated

steadily under hydrodynamic conditions where Pearson’s
model indicated Marangoni convection would be present, but
no evidence of Marangoni convection was found. Cam-
menga et al. �31� also measured the temperature profile near
the interface of evaporating water under hydrodynamic con-
ditions that Pearson’s model would have suggested Ma-
rangoni convection should be present, but they did not find
the evidence they expected. The existence of Marangoni con-
vection in water was therefore questioned �32�. Since Ma-
rangoni convection in water has been clearly demonstrated
�16,33�, and the Pearson model is not strictly valid when
evaporation is present, the relevant question is: under what
conditions is Marangoni convection initiated when the liquid
is evaporating?

Rosenblat et al. �34,35� considered a change in one of the
parameters in the Pearson model. They took the system to
have a finite aspect ratio �width over depth� but otherwise
used an approximation similar to that of Pearson. They did
not consider evaporation but allowed the liquid to be cooled
using a heat transfer coefficient that they assigned arbitrary
values. The side walls were taken to be adiabatic, but they
were not then able to obtain an analytical solution with the
no-slip boundary condition imposed at the walls. They intro-
duced the “slippery� walls approximation, in which the fluid
could not penetrate the walls, but could move parallel to
them. Their prediction with these approximations was that as
the aspect ratio is decreased, the critical Marangoni number
is increased. The role of the aspect ratio in determining the
stability of nonevaporating liquids was later investigated by
several authors �36–38�. These investigators also used the
“slippery side walls” approximation. Rather than use this ap-
proximation, we take the side walls to be isothermal and
apply the no-slip condition at the walls.

Investigations of the effect of evaporation on the stability
of a semi-infinite liquid layer have been made using the
Hertz-Knudsen relation and assuming the interfacial tem-
peratures of the liquid and vapor phases have the same value
�39–42�. When the Hertz-Knudsen relation is adopted, it is
necessary to introduce the accommodation coefficient. This
parameter has proven to be difficult to determine experimen-
tally. An investigation of the values reported for it has indi-
cated it varies by several orders of magnitude �9�. There is
strong evidence that during evaporation the interfacial tem-
peratures are discontinuous.

Margerit et al. �43� also used the Hertz-Knudsen relation
to describe an evaporating, semi-infinite liquid film, but al-
lowed the interfacial temperature to be discontinuous. Their
approach introduces four parameters that were ultimately
combined into an “equivalent” Biot number. They concluded
that as the temperature discontinuity was increased the sys-
tem became less stable, but evaporation has a stabilizing in-
fluence on the liquid. The value of the critical Marangoni
number found in this approach appears to be approximately
the same as those of Pearson. Thus, there would be no indi-
cation from this approach of how a Marangoni number of
more than 27 000 could exist without initiating convection.

Prosperetti and Plesset considered the stability of a semi-
infinite evaporating liquid layer �44� in which the energy
transport through the vapor phase was neglected. As justifi-
cation, they say: “it is known �45,46� that in the presence of
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any appreciable evaporation flux the temperature gradient in
the vapor is very nearly zero.” When Refs. �45,46� are ex-
amined, no experimental evidence is found to support their
claim. The evaporation of a thin film was considered by Bu-
relbach et al. �47�, and they also neglected the energy trans-
port through the vapor in their analysis. A similar approach
has been adopted in considering the evaporation of a sessile
droplet �48,49�. In contrast, in �21�, we described experi-
ments with the stainless-steel funnel in which water evapo-
rated with an average flux of 68 mg /m2 s, and all of the
energy to evaporate the liquid came through the vapor. When
the evaporation flux was raised to 100 mg /m2 s, the thermal
conduction through the vapor was still more than that
through the liquid: 133 compared with 117 W /m2.

In the model developed below, we impose the-
conservation-of-energy condition at the liquid-vapor inter-
face, and take the energy transport from both phases into
account. We examine the stability of a liquid layer with a
finite aspect ratio that is heated from below and is evaporat-
ing into its vapor. We eliminate the heat transfer coefficient
at the liquid-vapor interface by introducing the SRT expres-
sion for the evaporation flux. Importantly, the SRT expres-
sion for the evaporation flux does not contain any fitting
parameters, and it has been examined experimentally
�5,6,50�. When it is incorporated in a linear stability analysis
quantitative predictions of the critical Marangoni number,
Mac, can be made from knowledge of the interfacial condi-
tions. When the proposed theory is used to examine the ex-
periments with the stainless-steel funnel, it is predicted that
the observed Marangoni convection was not initiated by a
Pearson-type instability. For the experiments with the
PMMA funnel, it is predicted that the experimental Ma-
rangoni number is less than the predicted critical value.
Hence, no Marangoni convection is predicted for the PMMA
funnel, even though the Marangoni number was greater than
27 000 and none was observed.

III. PROBLEM DEFINITION

Consider an incompressible, gravity-free liquid of uni-
form depth, �, that is confined in a two-dimensional con-
tainer with lateral isothermal side walls separated by a dis-
tance of 2L. The fluid velocity, V� �x ,z , t�, with component
U�x ,z , t� in the x direction and W�x ,z , t� in the z direction,
and the temperature, T�x ,z , t�, must satisfy the following
conditions at the boundaries:

V� �L,z,t� = V� �− L,z,t� = 0, �1�

T��L,z� = TI
L, �2�

where TI
L is a constant and is equal to the temperature in the

liquid at the interface before the system is subject to the
perturbation,

T�x,�,0� = TI
L. �3�

At the bottom surface of the container

V� �x,0,t� = 0, �4�

and the temperature at this position is constant, Tth, and has
the same value for all values of x and t,

T�x,0,t� = Tth. �5�

At the liquid-vapor interface, there is an evaporation flux,
jev, and if the enthalpy on the vapor side of the interface is
denoted hI

V and that on the liquid side as hI
L, then, if the

temperature in both phases is uniform along the interface
�17–20�, conservation-of-energy gives

− �L��T�z=� · iz + �V��T�z=� · iz = jev�hI
V − hI

L� , �6�

where �L and �V are the thermal conductivities of the liquid
and vapor phases, respectively. The change in enthalpies may
be written in terms of the specific heats, cp

L ,cp
V, evaluated at

the triple point temperature, Ttp, and the latent heat at this
point, hfg �16�:

�hI
V − hI

L� = hfg�Ttp� + cp
V�TI

V − Ttp� − cp
L�TI

L − Ttp� , �7�

where the interfacial-vapor temperature is denoted TI
V.

The SRT expression for the evaporation flux
�1,3,5,6,50,51� may be written in terms of the change in en-
tropy that results from a molecule transferring from the liq-
uid phase to the vapor phase, �sLV, and the equilibrium ex-
change rate between the liquid and vapor phases, Ke. If the
chemical potentials of the molecules in the liquid and the
vapor phases at the interface are denoted �I

L ,�I
V, then the net

rate of molecular flux from the liquid to the vapor phase is
given by �5,52�

jev = 2Ke sinh��sLV

kb
� , �8�

where kb is the Boltzmann constant, and �sLV may be written
as

�sLV = ��I
L

TI
L −

�I
V

TI
V � + hI

V� 1

TI
V −

1

TI
L� . �9�

We assume the local equilibrium approximation is valid for
the flat liquid-vapor interface that we consider, and apply
statistical thermodynamics to determine the expressions for
�I

V and hI
V. Provided the isothermal compressibility �T and

the saturation-vapor pressure, Ps, satisfies

�T�PV − Ps� � 1,

for the triatomic water molecule, with the internal molecular
vibration frequencies �phonons� denoted as 	l, the expres-
sion for �sLV may be written as �3,5,52�

�sLV

kb
= 4�1 −

TI
V

TI
L� + � 1

TI
V −

1

TI
L�	

l=1

3 �
	l

2kb

+

	l

kb�exp�
	l/kbTI
V� − 1�

� +
v f

kbTI
L �PI − Ps�TI

L��

+ ln
�TI
V

TI
L�4�Ps�TI

L�
PI

V �� + ln�qvib�TI
V�

qvib�TI
L�
� , �10�
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qvib�T� � 
l=1

3
exp�− 
	l/2kbT�

1 − exp�− 
	l/kbT�
, �11�

and

Ke =
Ps�TI

L�exp��v f/vg��PI/Ps�TI
L� − 1��

�2�mwkbTI
L

, �12�

where v f is the molecular specific volume, mw is the molecu-
lar weight of the fluid, and PI is the pressure in the liquid and
vapor phases at the interface.

When Eqs. �10� and �12� are combined with Eq. �8�, one
obtains an expression for the evaporation flux that is in terms
of the instantaneous interfacial properties TI

L, TI
V, PI, the

material properties of water Ps�TI
L�, v f, and the molecular

phonons of the water molecule, 	l. We take the material
properties and the internal molecular vibration frequencies to
be known from previous, independent experiments. Note that
there are no free or fitting parameters in the SRT equation for
the evaporation flux.

Conservation of mass in the liquid film gives

��

�t
= �V� �x,0,t� − V� �x,�,t�� · iz, �13�

and at the liquid-vapor interface

V� �x,�,t� · iz = v f jev. �14�

The liquid film is maintained of constant thickness by fluid
entering the container uniformly at the bottom,

V� �x,0,t� · iz = v f jev. �15�

Thus, as seen from Eq. �13�, ��t� is constant, an approxima-
tion that is consistent with recent experimental observation
�53�.

If �T denotes the change in surface tension with tempera-
ture and  the dynamic viscosity, a stress balance at the
interface requires

� �U

�z
�

z=�

= �T� �T

�x
�

z=�

. �16�

If the pressure is denoted as P�x ,z , t�, the conservation of
mass, linear momentum, and energy requires

�� · V� = 0, �17�

�V�

�t
+ �V� · �� �V� = −

1

�
�� P + ��2V� , �18�

�T

�t
+ �V� · �� �T = ��2T , �19�

where � is the kinematic viscosity, � is the liquid density and
� is the liquid thermal diffusivity. Viscous dissipation is ne-
glected in Eq. �19� since we only consider an infinitesimal
perturbation from the initial state in which there is no flow,
but only energy transport by thermal conduction.

IV. EXPERIMENTAL OBSERVATIONS

In the experiments reported in �21�, the evaporation took
place either from a stainless steel or a PMMA funnel. The
throat diameter in both cases was 1.09 mm, giving L a value
of 0.54 mm. The funnel mouth was 3.55 mm above the
throat, and we take this height to be the value of � in each
experiment. Thus, the aspect ratio, A, was 0.15 in these ex-
periments. The experiments were performed under steady-
state conditions and the measured temperatures on the funnel
center lines at the liquid-vapor interface are listed in Tables
I and II. Also, for each experiment, the interface was inves-
tigated for the presence of Marangoni convection �see Inter-
face observed in Table I�. The temperatures in these tables
were used to calculate the experimental Marangoni numbers
using the properties listed in the Appendix.

V. INITIAL STATE OF THE EVAPORATING LIQUID

At the initial time, we suppose the liquid is evaporating
steadily, and is stably stratified. For water, this means the
temperature at the interface is less than the �3.5 °C throat
temperature. At the highest evaporation rate, the Reynolds
number of the flow entering the throat of the stainless-steel
funnel was 5�10−5 and that for the PMMA funnel was 1.8
�10−3. Thus, we neglect the flow entering the funnels, and
take the z component of the liquid velocity at the throat as
approaching zero. At the liquid-vapor interface, the liquid
speed perpendicular to the interface would be even smaller
than that at the throat; thus we neglect the flow at this inter-
face as well. As indicated by Eqs. �13�–�15�, � is constant in
time, and that the initial state may be approximated as a
steady conduction state with negligible convection,

TABLE I. Experimental conditions and the calculated evapora-
tion number, Eev, and critical Marangoni number, Macf, during wa-
ter evaporation from a stainless-steel funnel �16,17,19�.

Experimental conditions

Expt. EV6 EV7 EV8

Vap.-ph. press. �Pa� 786.6 783.9 777.3

Intf. vap. temp. �°C� 4.62 4.56 4.46

Intf. liq. temp. �°C� 3.56 3.47 3.35

Throat temp. �°C� 3.57 3.53 3.53

Average −�L� �TL

�z �z=� �W /m2� 0 43.37 57.05

Average �V� �TV

�z �z=� �W /m2� 158.09 121.83 145.16

� �mm� 3.55 3.55 3.55

Maexp 10 127 447

Interface observed quiescent marginal convective

Calculated value of Eev and predicted critical Marangoni number,
Macf

Eev�103

�calculated using SRT� 0.5136 0.5173 0.5208

Macf �A=0.15� 3.61�105 3.58�105 3.56�105
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V� �x,z,0� = 0, �20�

and the temperature profile is given by

TL�x,z,0� = Tth + �z . �21�

If Eq. �21� is applied at the interface, where TL�x ,� ,0�=TI
L,

the constant � may be determined

� =
TI

L − Tth

�
. �22�

Thus, � is expressed in terms of measurable quantities: the
liquid film depth and the temperatures in the liquid at the
liquid-vapor interface and at the bottom of the system.

Since gravity is not acting, �� P vanishes in the initial state
�see Eq. �18��, and P is equal P0, a constant. The initial state
is the steady-state solution of the conservation equations.
From Eqs. �6� and �7�, conservation of energy at the interface
becomes

jev
0 �h0

V − h0
L� = − �L� + �V� �TV

�z
�

I

, �23�

where labeling a quantity with a 0 indicates it is to be evalu-
ated at the initial time. We take the temperature gradient in
the vapor as being time independent. Now we investigate the
stability of the initial state by considering the result of sub-
jecting it to a perturbation.

VI. LINEARIZATION OF THE GOVERNING EQUATIONS
AND THEIR BOUNDARY CONDITIONS

We obtain the linearized governing equations from a per-
turbation analysis of the liquid phase, and assume the vapor

phase is undisturbed. In the perturbed state, we take as the
expression for the fluid velocity in the liquid phase

V� L�x,z,t� = u�x,z,t�ix + w�x,z,t�iz, �24�

the liquid phase pressure,

PL = P0 + p�x,z,t� , �25�

and the liquid phase temperature

TL = Tth + �z + ��x,z,t� , �26�

where u�x ,z , t�, w�x ,z , t�, ��x ,z , t�, and p�x ,z , t� are the in-
finitesimal perturbations. The perturbed evaporation flux
may be written as

jev = jev
0 + � � jev

�TL�
I

��x,�,t� , �27�

and the difference in the interfacial enthalpies may be ex-
pressed as

�hI
V − hI

L� = �h0
V − h0

L� − cp
L��x,�,t� . �28�

The expression for jev is given in Eqs. �8�–�12�.
If Eqs. �13� and �17�–�19� are linearized by introducing

the perturbations and nondimensionalized by scaling the
length with �, time with �2 /�, velocity with � /�, pressure
with ��� /�2 and temperature with ��, one finds

� · V� L = 0, �29�

�V� L

�t
= �p + �2V� L, �30�

TABLE II. Experimental conditions during water evaporation from a PMMA funnel �21�, and the calcu-
lated values of the evaporation number, Eev, and the critical Marangoni number when the system is approxi-
mated semi-infinite, Mac� and when it is approximated as finite, Macf.

Experimental conditions

Expt. Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5

Vap.-ph. press. �Pa� 631 459 403 231 209

Intf. vap. temp. �°C� 1.55 −2.52 −4.26 −10.25 −11.59

Intf. liq. temp. �°C� 0.50 −3.92 −6.02 −13.11 −14.75

Throat temp. �°C� 3.58 3.53 3.57 3.47 3.50

Avg. evap. flux �mg /m2 s� 244 384 442 604 653

Average −�L� �TL

�z �z=� �W /m2� 315.39 574.49 653.99 993.10 1099.46

Average �V� �TV

�z �z=� �W /m2� 149.89 180.67 214.32 267.13 272.59

� �mm� 3.55 3.55 3.55 3.55 3.55

Maexp 8277 17119 20326 27640 27847

Interface observed quiescent quiescent quiescent quiescent quiescent

Calculated value of Eev and predicted critical Marangoni numbers Mac� and Macf

Eev�103 �calculated using SRT� 0.6112 0.7985 0.9390 1.484 1.473

Mac� 55000 42000 38000 22000 22000

Macf �A=0.15� 2.78�105 2.13�105 1.82�105 1.16�105 1.17�105
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Pr
��

�t
= �2� − V� L · iz, �31�

where Pr is the Prandtl number, � /�.
We can eliminate the pressure term by taking the curl of

Eq. �30� which yields the vorticity equation. After taking the
curl of the vorticity equation and combining the result with
the continuity equation, one finds �54�

�2� �

�t
− �2�w = 0. �32�

The linearized energy equation in the perturbed state may be
written as

�Pr
�

�t
− �2�� = − w . �33�

At z=0, we assume the perturbation vanishes

w�x,0,t� = 0, �34�

and since u�x ,0 , t� vanishes for all values of x, so does

� �u

�x
�

z=0
= 0. �35�

Then from continuity

� �w

�z
�

z=0
= 0. �36�

If the aspect ratio, A, is defined as L /�, then on the isother-
mal side walls, x= �A, one finds from Eqs. �2� and �26�

���A,z,t� = 0. �37�

Similarly, from Eqs. �1� and �24�,

w��A,z,t� = 0. �38�

We write the solution to the continuity equation in terms of
the stream function �,

w = −
��

�x
, �39�

and

u =
��

�z
, �40�

then Eq. �1� gives

� ��

�z
�

x=�A

= � ��

�x
�

x=�A

= 0. �41�

Thus, � is a constant and we take the constant to be 0,

���A,z,t� = 0. �42�

Since T has the value Tth at z=0, as seen from Eq. �26�, the
temperature perturbation also vanishes there,

��x,0,t� = 0. �43�

For the evaporation fluxes before the onset of convection,
one finds from Eqs. �13�–�15� that for � to remain constant

w�x,1,t� = 0. �44�

From Eqs. �16� and �29�

� �2w

�z2 �
z=1

= − Ma� �2�

�x2�
z=1

, �45�

where the Marangoni number Ma is given by

Ma =
�T��2

�
. �46�

After substituting Eqs. �27� and �28� into Eqs. �6� and �7�,
linearizing, and nondimensionalizing, the-conservation-of-
energy equation becomes

Eev� ��

�z
�

z=1
+ ��x,1,t� = 0, �47�

where the evaporation number Eev, is defined

Eev =
�L

�

�h0

V − h0
L�� � jev

�TL�
I

− cp
Ljev

0 �−1

. �48�

We note that Eev may be evaluated for the given instanta-
neous interfacial properties �TI

L ,TI
V , PI� using SRT, Eqs.

�8�–�12�, and the liquid-layer thickness. Thus, there is no
need to introduce a phenomenological heat transfer coeffi-
cient �55,56� into the analysis.

A. Conditions for marginal stability of a finite-sized system

We suppose w�x ,z , t� and ��x ,z , t� to be of the form

w�x,z,t� = − ws�x,z�exp��t� ,

��x,z,t� = �s�x,z�exp��t� , �49�

where � is the growth rate and is in general complex. Then

�w

�t
= − ws� exp��t� ,

��

�t
= �s� exp��t� . �50�

As indicated by Eq. �20�, in the initial state ws is equal zero,
but now we wish to determine the expression for ws and �s in
the state of marginal stability. This state exists when Re���
vanishes. We will show that when this state is reached Im���
is also zero, indicating the marginally stable state is station-
ary in time �57–59� for the finite aspect ratio problem defined
in the previous section.

When w�x ,z , t� and ��x ,z , t� are substituted into Eqs. �32�
and �33�, one finds

��2ws − �4ws = 0,

� Pr �s − �2�s = ws. �51�

If the real and imaginary portions of Eq. �51� are considered
separately, one finds

Re����2ws − �4ws = 0, �52�

DAS, MACDONALD, AND WARD PHYSICAL REVIEW E 81, 036318 �2010�

036318-6



Im����2ws = 0, �53�

Re���Pr �s − �2�s = ws, �54�

Im���Pr �s = 0. �55�

Since in the marginally stable state, by definition, Re��� van-
ishes

� �2

�x2 +
�2

�z2�� �2

�x2 +
�2

�z2�ws = 0, �56�

and

� �2

�x2 +
�2

�z2��s = − ws. �57�

It will be shown below that for Eqs. �53� and �55� to be
satisfied, Im��� must vanish; thus, Eqs. �56� and �57� must
be solved to determine ws and �s in the marginally stable
state.

The boundary conditions in the marginally stable state at
x= �A are

ws��A,z� = 0; �58�

and since

ws = −
��s

�x
,

and

us =
��s

�z
,

from Eqs. �37� and �42�, we have at x= �A,

�s��A,z� = 0, �59�

�s��A,z� = 0. �60�

At z=0, the boundary conditions, Eqs. �34�, �36�, and �43�,
give

ws�x,0� = � �ws

�z
�

z=0
= 0, �61�

�s�x,0� = 0. �62�

And at z=1, one finds from Eqs. �44�, �45�, �47�, and �50�
that in the marginally stable state

ws�x,1� = 0, �63�

� �2ws

�z2 �
z=1

= Ma� �2�s

�x2 �
z=1

, �64�

Eev� ��s

�z
�

z=1
+ �s�x,1� = 0. �65�

For the system to be marginally stable, one condition that the
velocity perturbation in the z direction must satisfy is given

by the biharmonic equation �Eq. �56��. The corresponding
condition that the temperature perturbation must satisfy may
be seen in Eq. �57�. The boundary conditions for these per-
turbations are listed in Eqs. �58�–�65�.

B. Conditions for marginal stability of a system
that is infinite in the horizontal direction

For comparison with the results obtained when the system
is finite, we first consider a system with infinite aspect ratio
�i.e., A→��. Following the procedure outlined above, one is
again led to Eqs. �56� and �57�, but the boundary conditions
are now different. There is no longer an eigenvalue problem
in the horizontal direction. We suppose the solution is peri-
odic in this direction with wave number k,

ws = f�z�cos�kx� , �66�

and that

�s = g�z�cos�kx� . �67�

Substituting the forms of ws and �s into Eqs. �56� and �57�
gives

�D2 − k2�2f�z� = 0, �68�

and

�D2 − k2�g�z� = − f�z� . �69�

At z=0, Eqs. �34�, �36�, and �43� now give

f�0� = � � f

�z
�

z=0
= 0, �70�

g�0� = 0. �71�

And at z=1, one now finds from Eqs. �44�, �45�, and �47�

f�1� = 0, �72�

� �2f

�z2�
z=1

= − Ma�k2g�1� , �73�

Eev� �g

�z
�

z=1
+ g�1� = 0. �74�

The problem thus reduces to the solution of ordinary differ-
ential equations and once the solution is available, the Ma-
rangoni number can be obtained from Eq. �73�,

Ma� =
a��k2 − 2K�k cosh�k� + �1 − K�k2 sinh�k��

g�1�k2 , �75�

where

K =
k cosh�k� − sinh�k�

sinh�k�
, �76�

and after simplification g�1� is given by

g�1� = a
Eev�− k3 coth�k� + �sinh�k��2�
4k2�Eevk cosh�k� + sinh�k��

. �77�

Note that the arbitrary constant a divides out in the final
expression for the Marangoni number.
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As seen in Eqs. �75�–�77�, Ma� depends on two param-
eters, Eev and the wave number k. In Fig. 1, for the experi-
mental values of Eev listed in Table II, Ma� is shown as a
function of the wave number. The most unstable mode, kc,
for each value of Eev corresponds to kc= �3. For the most
unstable mode, as observed in Fig. 1, the critical value of the
Marangoni number, Mac�, is determined by the value of Eev,
and as Eev is increased Mac� is decreased. In Table II, it is
seen that as Eev is increased, the evaporation flux increases.
Thus, the prediction is that evaporation destabilizes the sys-
tem in the sense that evaporation reduces the critical Ma-
rangoni number.

In the experiments conducted with the PMMA funnel
�Table II�, the evaporation flux was progressively raised. For
a semi-infinite liquid that had the measured values of TI

L, TI
V,

and P at the interface, the calculated value of the critical
Marangoni number, Mac�, is listed, along with the calculated
value of the Marangoni number for each experiment, Maexp.
Note that for the experiments with the lower evaporation
fluxes �experiments 1–3� Mac��Maexp. Thus, for these ex-
periments the prediction is that there would be no transition
from a quiescent to a convecting interface, but if the liquid
were approximated as semi-infinite, in experiments 4 and 5,
Mac��Maexp. Thus, the prediction is that if the liquid film
were semi-infinite, Marangoni convection would have oc-
curred in experiments 4 and 5. However, Marangoni convec-
tion was not observed in these cases either, as indicated by
the last line of the experimental conditions �Table II�. This
suggests that the finite size of the liquid phase was important
for these two experiments.

VII. EXPRESSION FOR ws FOR A MARGINALLY STABLE
SYSTEM THAT HAS A FINITE ASPECT RATIO

For a system with a finite aspect ratio, the solution to Eq.
�56� may be expressed as

ws = 	
n=1

�

�sinh knz + Knz sinh knz − knz cosh knz�

��Cn sin knx + Dn cos knx� , �78�

where Cn and Dn are arbitrary constants, and

kn � n�/A , �79�

and

Kn �
kn cosh kn − sinh kn

sinh kn
. �80�

The no-slip boundary conditions that we consider are given
in Eqs. �58� and �60�. The conditions at the liquid-vapor
interface and at the heating surface are given in Eqs. �60� and
�61�. For the system that we consider, Dn vanishes, but we
note that if slip were allowed at x= �A �34,36–38�, Dn
would be nonzero, and the cos kn modes would be the only
ones present. One may verify that ws with Dn=0 is the exact
solution for the biharmonic equation with the boundary con-
ditions given in Eqs. �58�, �60�, �61�, and �63�.

Since we now have the expression for ws, Eq. �78�, we
can complete the proof that the marginally stable state is
stationary. From the expression for ws, one finds

�2ws � 0;

thus, from Eq. �53�,

Im��� = 0.

Hence, the marginally stable state is stationary in time since
both Re��� and Im��� vanish.

From the definition of the stream function, one finds for
each mode

ws
n = − ��s

n/�x .

If ws
n is integrated, first from −A to x and then from A to x,

since �n��A ,z�=0, one finds

�s
n = − �

−A

x

ws
n�x�,z�dx� = − �

A

x

ws
n�x�,z�dx�. �81�

Also, by integrating the continuity equation and applying the
boundary conditions given in Eq. �60�

us
n�x,z� = − �

A

x �ws
n

�z
�x�,z�dx� = − �

−A

x �ws
n

�z
�x�,z�dx�.

�82�

Note that the expression for us
n may be constructed from the

expression for ws
n. From Eqs. �78� and �82�, one finds

us
n�x,z� =

Cn

kn
�cos n� − cos knx���Kn − kn

2z�sinh knz

+ Knknz cosh knz� . �83�

Note us
n�x ,z� is an even function of x, and at z=1, the direc-

tion of the flow is determined by the sign of (�−1�n

−cos knx). For −A�x�A, the sign of this term is determined
by the sign of �−1�n. Thus, for each mode, the surface flow is

1 2 3 4 5 6 7 8
2

4

6

8

10

k

10
-4
M
a ∞

E
ev
=1.484× 10-3

E
ev
=1.473× 10-3

E
ev
=0.939× 10-3

E
ev
=0.778× 10-3

E
ev
=0.611× 10-3

FIG. 1. �Color online� For a semi-infinite liquid film, the Ma-
rangoni number is plotted as a function of the evaporation number,
Eev.
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unidirectional, but the direction changes for successive
modes. Using the data in Table II corresponding to the high-
est value of Maexp, experiment 5, this behavior is demon-
strated in Figs. 2–4 and has not been previously predicted.
This mode was obtained from the new expression for the z
component of the perturbed velocity �Eq. �78��.

As may be seen from Eqs. �78� and �83� for x
=0,ws�0,z� is zero for all modes, but us

n�0,z� is zero only for
the even modes. Thus, as indicated in Fig. 2 for an even
mode, the centerline is a stagnation line. Apart from the stag-
nation lines, the other positions where both ws

n and us
n vanish

are at the center of the rolls.
For a given A and n, the value of kn can be determined

from Eq. �79� and the positions, zi, where us
n�x ,zi� vanishes

may be obtained from Eq. �83� for any x,

tanh�knzi� =
Knknzi

kn
2zi − Kn

. �84�

The values of xi where both us
n and ws

n vanish may be deter-
mined from Eq. �78�. Since

sinh�knzi� + Knzi sinh�knzi� − knzi cosh�knzi� � 0,

xi is obtained from

sin�knxi� = 0. �85�

At the positions other than the stagnation lines where
us

n�xi ,zi� and ws
n�xi ,zi� vanish are illustrated in Figs. 2–4 as

the roll centers. The values of xi and zi corresponding to the
roll centers calculated by the outlined procedure are listed in
Table III. If the boundary condition at the side walls had
required slip, then ws would have been expressed in terms of
cos knx modes. These modes do not exhibit unidirectional
surface flow �34�.

The expression for �s
n may be obtained from Eq. �81�,

�s
n�x,z� =

Cn

kn
�cos n� − cos knx�

�„knz cosh knz − �1 + Knz sinh knz�… . �86�

The position on the liquid-gas interface where us
n has its

maximum value, x0, may be determined from

z
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0
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1
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x
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(x
0,
1)

-2 -1 0 1 2
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0

1
θ1 s
(x
,1
)/θ

1 s
(x
0,
1)

FIG. 2. �Color online� For an aspect ratio of 2, an Eev value of
1.473�10−3, and the first mode, the scaled temperature perturba-
tion at the top surface is shown in the upper graph, the calculated
streamlines for this mode are shown in the middle graph, and the
surface speed is shown in the lower graph.

z
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0
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1
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FIG. 3. �Color online� For an aspect ratio of 3, an Eev value of
1.473�10−3, and the second mode, the scaled temperature pertur-
bation at the top surface is shown in the upper graph, the calculated
streamlines for this mode are shown in the middle graph, and the
surface speed is shown in the lower graph.

z
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0
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1
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x
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FIG. 4. �Color online� For an aspect ratio of 5, an Eev value of
1.473�10−3, and the third mode, the scaled temperature perturba-
tion at the top surface is shown in the upper graph, the calculated
streamlines for this mode are shown in the middle graph, and the
surface speed is shown in the lower graph.

TABLE III. Positions of roll centers.

n=1, A=2 us=ws=0 �x1 ,z1�
�0,0.68�

n=2, A=3 us=ws=0 �x1 ,z1� �x2 ,z2�
�−1.5,0.68� �1.5, 0.68�

n=3, A=5 us=ws=0 �x1 ,z1� �x2 ,z2� �x3 ,z3�
�−3.33,0.68� �0, 0.68� �3.33, 0.68�
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� �us
n�x,1�
�x

�
x=x0

= 0. �87�

Then

us
n max = us

n�x0,1� .

The speeds may now be scaled in terms of us
n max and the

constant Cn eliminated. As seen in Figs. 2–4, the
x-component of velocity, us, �lower panel� is symmetric
about x equal to zero, but the flow at z=1 is unidirectional.

VIII. EXPRESSION FOR �s IN THE STATE
OF MARGINAL STABILITY

The expression for the temperature perturbation �s must
satisfy Eq. �57� and the corresponding boundary conditions
Eqs. �60�, �62�, and �65�. We choose to represent �s in a sine
series,

�s = 	
l=1

�

Clgl�z�sin klx , �88�

where Cl are the coefficients of the expansion. Note that �s
satisfies the isothermal boundary conditions at the sidewalls.
Moreover each mode of �s corresponds to a mode of ws since
the latter is also a sine series. Note that ws and �s are related
through Eq. �57�.

This choice of �s and the expression of ws from Eq. �78�
are inserted into Eq. �57� to yield

	
l=1

�

Cl
d2gl

dz2 − kl
2gl�sin klx

= − 	
m=1

�

Cm�sinh kmz + Kmz sinh kmz

− kmz cosh kmz�sin kmx . �89�

After multiplying both sides by sin�n�x /A� and integrating
over x from x=−A to x=+A, one obtains,

�d2gn

dz2 − kn
2gn� = − �sinh�knz� + Knz sinh�knz�

− knz cosh�knz�� . �90�

The general solution of the Eq. �90� may now be written as

gn�z� = C̄1 cosh�knz� + C̄2 sinh�knz� −
Kn

4kn
2 �knz2 cosh�knz�

− z sinh�knz�� +
1

4kn
�knz2 sinh�knz� − 3z cosh�knz�� .

�91�

When this expression for �s is required to satisfy the bound-
ary conditions at the top and bottom surfaces,

gn�0� = 0,

Eev
dgn

dz
�1� = − gn�1� , �92�

one obtains C̄1=0 and

C̄2 =
1

4kn
2�knEev cosh�kn� + sinh�kn��

�Eev�knKn cosh�kn�

+ kn
2Kn sinh�kn� − Kn sinh�kn� + kn

2 sinh�kn� − kn
3 cosh�kn�

+ 3kn cosh�kn�� + �knKn cosh�kn� − Kn sinh�kn�

− kn
2 sinh�kn� + 3kn cosh�k��� . �93�

Thus, the expression for �s has now been obtained in terms
of the parameters Eev and A. The value of Eev was calculated
from the experimental results listed in Table II using Eq.
�48�. The values of A for each case are given in the captions
of Figs. 2–4. The temperature perturbation at the interface is
shown in the upper panel of each of these figures. Note that
for the second mode, Fig. 2, the temperature gradient alone
near the side walls does not determine the direction of the
surface velocity. The viscous effects arising from the side
walls have an influence on the direction of the surface flow.
For the second mode, Fig. 2, in the core of the fluid, the
reversal of the temperature gradient, results in a stagnation
point of the flow at the centerline. There are, however, two
stagnation points for the third mode �Fig. 4�. An investiga-
tion indicates the number of stagnation points depends on the
mode. For the nth mode, n−1 stagnation points are predicted
in the flow.

IX. CRITICAL MARANGONI NUMBER
FOR FINITE-SIZED SYSTEMS

The critical Marangoni number for a finite-sized system is
determined from the only boundary condition that has not yet
been satisfied. For this type of system, Eq. �64�, the tangen-
tial stress boundary condition at the interface �z=1� for each
mode may be expressed as

�2ws
n

�z2 = Man

�2�s
n

�x2 , �94�

The expression for ws
n is given in Eq. �78� and the expression

for �s
n in Eqs. �88�–�93�. After putting these expressions into

Eq. �94�, one finds

Man =
��kn

2 − 2Kn�kn cosh�kn� + �1 − Kn�kn
2 sinh�kn��

gn�1�kn
2 .

�95�

Using this expression, calculating the value Eev for experi-
ment 5 of Table II, choosing a mode �or value of n�, Ma may
be plotted as a function of the aspect ratio A. The type of
results found is illustrated in Fig. 5 for the first eight modes.
The horizontal dashed line in this figure indicates the value
of the critical Marangoni number obtained for a semi-infinite
liquid layer when Eev has a value of 1.473�10−3 �see Fig.
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1�. Note that at certain values of the aspect ratios, A, the
critical Marangoni number for the finite system, Macf, is
equal to that for the semi-infinite system Mac�. This occurs
when A is such that the critical wave number of the horizon-
tal motion, kn=n� /A, is equal to that of the semi-infinite
system, kc, for that value of Eev. We denote this value of the
aspect ratio as A�. For the experiments described in Table II,
kc�3. The value of A� may, in general, be written as

kc = kn.

A� =
n�

kc
. �96�

When A�A� or A�A�, the system is stabilized compared to
that when A=A�. For the funnel used for the experiments
described in Table II, A is approximately 0.15. For this value
of A and the values of Eev calculated for experiments 4 and 5
of this table, the value of Macf is greater than Maexp; thus the
transition from quiescent to a convecting interface is not pre-
dicted for these experiments either.

At certain values of A, two modes are equally unstable,
and there is the possibility of mode switching, as has been
observed experimentally by Johnson and Narayanan �60�. As
indicated in Figs. 2–4, a change in the mode changes the
flow pattern.

X. DISCUSSION AND CONCLUSION

A linear stability analysis has been performed to deter-
mine the conditions under which an evaporating liquid layer
of thickness � heated from below is marginally stable. Both
an infinite and finite values of the aspect ratio are considered.
When the liquid evaporates, the interface can be heated both
through the liquid and through the vapor phases. For finite
aspect ratio systems, the liquid is taken to be held in a two-
dimensional container that has isothermal side walls. The

fundamental difference between the proposed approach and
earlier ones is that for both finite and semi-infinite systems,
statistical rate theory is applied at the liquid-vapor interface
to predict the evaporation flux �Eqs. �8�–�12��. This removes
the necessity of introducing phenomenological coefficients
such as the heat transfer coefficient �56� or the accommoda-
tion coefficient �9� or the Onsager coefficients �43�. The ex-
pression obtained for the evaporation flux from SRT �5� has
significant experimental support �6,50�, and allows the inter-
facial temperatures and chemical potentials to be discontinu-
ous. The temperature in the vapor at the interface has been
found experimentally to be greater than that of the liquid
�1–4,16–19,50,61–63� and this disequilibrium at the inter-
face is included in the SRT calculation of the evaporation
flux.

The steady-state solution of the coupled system of equa-
tions is perturbed by considering small changes in the
interfacial-liquid temperature. For both finite and semi-
infinite systems, this leads to the boundary condition given in
Eq. �47� that contains the evaporation number, Eev. Using
SRT, Eqs. �8�–�12�, the value of this parameter may be de-
termined from values of the instantaneous interfacial proper-
ties, TI

L ,TI
V , P and the liquid-layer thickness, �. There are no

fitting or undefined parameters in this procedure; thus, the
value of Eev may be calculated for a given physical circum-
stance. If the conditions at the interface are changed so as to
increase the value of Eev, the total-energy flux to the inter-
face increases, as does the average evaporation flux �see
Table II�.

When the aspect ratio is taken to be infinite and the solu-
tion of the linearized equations is assumed to be periodic in
the horizontal direction with wave number k, the Marangoni
number Ma� depends on k and Eev. For each value of Eev,
there is a critical value of k, denoted kc. This case is depicted
in Fig. 1. Note that for the range Eev values considered in the
experiments, as Eev is increased, Mac� decreases; thus, for
these experimental conditions, evaporation is predicted to
destabilize even the semi-infinite system.
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FIG. 5. �Color online� When the interfacial
evaporation number, Eev, is 1.473�10−3, the
horizontal dashed line indicates the critical Ma-
rangoni number for a semi-infinite system. The
Marangoni numbers for the first eight modes of a
finite-sized system are shown as a function of A.
Note that for certain values of A the critical val-
ues of the Marangoni number is the same as that
for a semi-infinite system.
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The opposite effect of evaporation on the stability of
semi-infinite systems was predicted by Margerit et al.
�43�. They used nonequilibrium thermodynamics and a
linearized-Hertz-Knudsen expression for the evaporation
flux. The thermodynamic forces were taken to be the
interfacial-temperature discontinuity and the deviation of
the liquid-interface temperature from the saturation value.
They concluded the interfacial-temperature discontinuity
destabilizes the system, but the deviation of the inter-
facial-liquid temperature from the saturation temperature
�Hertz-Knudsen-evaporation flux� had a stabilizing effect on
the system. When SRT is applied both the interfacial-
temperature discontinuity and the deviation from equilibrium
are included in the value of Eev, and one predicts the net
effect of the evaporation.

In Ref. �21�, it is argued that the Pearson model does not
apply when the liquid evaporates because: �1� at the liquid-
vapor interface, energy conservation is not satisfied. For ex-
ample, the latent heat plays no role in that model. �2� Also,
the temperature discontinuity that he assumed is in the op-
posite direction of that found in the experiments. �3� The
value of the Marangoni number that is predicted to be critical
is much smaller than those observed in the experiments with
the PMMA funnel.

For a finite-sized system, the predictions are more com-
plex: consider a finite-sized and a semi-infinite layer of the
same liquid. For isothermal side walls and the no-slip condi-
tions at all walls, a separation-of-variables type solution is
obtained in which each mode depends on the aspect ratio, A,
and Eev. Remarkable new modes are predicted �Figs. 2–4� :
for each mode, the surface flow is unidirectional, but the
direction is predicted to change with successive modes. For
evenly numbered modes, there is a flow stagnation point on
the center line of the container. In general, flow rolls are
present in the bulk liquid, and the number of rolls depends
on the flow mode. Because of viscous effects at the side
walls, on the liquid-vapor interface, there is a portion of the
interface where the flow direction is different than that ex-
pected from the predicted temperature gradient: the flow is in
the direction of increasing temperature. For example, as in-
dicated in Fig. 2, the prediction is that the flow must be some
distance away from the viscous effects of the side walls be-
fore the flow direction is controlled by the temperature gra-
dient. Under certain conditions the finite and semi-infinite
systems are predicted to have the same value of their critical
Marangoni numbers. If the same conditions exist at the in-
terface �TI

L ,TI
V , P� and the liquid layers have the same thick-

ness, then they would have the same value of Eev. If the
finite-sized system had aspect ratios of n� /kc, denoted A�,
the wave length in the horizontal direction in the two sys-
tems would be the same. This circumstance is depicted in
Fig. 5. Thus, for a finite-sized system with one of these as-
pect ratios, the aspect ratio plays no role in determining the
critical Marangoni number: Macf =Mac�. However, if the as-
pect ratio is either greater or less than A�, the effect is pre-
dicted to stabilize the system because the critical value of the
Marangoni number is increased for these values of A. The

amount of the increase depends on the value of Eev and the
mode. An example for one value of Eev and several modes is
given in Fig. 5.

For the experiments described in Table II, the value of Eev
was determined from the measured values of TI

L, TI
V, P, �,

and A in each experiment was less than A�. The predicted
value of Macf is listed in the Table. Note that for each ex-
periment, Macf �Maexp. Since the liquid was stably strati-
fied, the Rayleigh number would be negative, and the Nield
model would indicate the critical Marangoni number would
be even larger than Macf �21,23�. Thus, no transition to Ma-
rangoni convection is predicted for any of the water evapo-
ration experiments described in Table II, and none were ob-
served: the interface was observed to be quiescent in each
experiment. This supports the hypothesis of �21� suggesting
that the Marangoni convection observed in the experiments
with the stainless-steel funnel, Table I, resulted from thermal
conduction in the funnel walls imposing a temperature gra-
dient along the liquid-vapor interface rather than from an
instability.
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APPENDIX

The correlations used to calculate water properties �in
SI units, T in °C� are listed below. The density was taken to
be �64�

��T� = 999.867 876 9 + 0.068 252 345 12T

− 0.009 172 478 57T2 + 0.000 108 280 32T3

− 0.172 307 755 6 � 10�−5�T4 + 0.438 663 578 8

� 10�−7�T5 − 0.956 189 531 5 � 10�−9�T6, �A1�

the surface tension �65�

��T� = 0.075 478 7 − 0.000 138 489T − 0.336 392

� 10�−6�T2 + 0.475 362 � 10�−9�T3 + 0.264 479

� 10�−9�T4, �A2�

the dynamic viscosity �64�

�T� = 0.001 792 − 6.267 241 � 10�−5�T + 1.567 118 5

� 10�−6�T2 − 5.306 324 2 � 10�−9�T3 − 1.764 882 744

� 10�−9�T4 − 2.799 21 � 10�−10�T5, �A3�

the thermal conductivity �66�

��T� = 0.560 43 + 0.002 074 9T − 7.919 24 � 10�−6�T2

− 1.043 04 � 10�−8�T3, �A4�

and the saturation-vapor pressure �6�
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Ps = 611.2 exp�1045.851 157 7 − 21 394.666 262 9/�T

+ 273.12� + 1.096 904 4�T + 273.12� − 1.300 374 1

� 10�−3��T + 273.12�2 + 7.747 298 4 � 10�−7��T

+ 273.12�3 − 2.164 900 5 � 10�−12��T + 273.12�4

− 211.389 655 9 ln�T + 273.12�� . �A5�

We also use the following thermodynamic relations to deter-
mine �T and cp �6�:

�T = −
1

�

��

�T
, �A6�

cp
L�T� = cp

V�T� −
d

dT
�RT2

Ps

dPs

dT
� . �A7�
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